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Abstract. N-Graphs, introduced by De Oliveira in 2001, are a proof
system whose derivations are represented by means of digraphs. These
graphs are mostly based on Gentzen’s natural deduction and sequent
calculus formalisms, but in addition, the system combines four geo-
metric approaches to deduction: tables of development (Kneale, 1957),
proof-nets (Girard, 1987), logical flow graphs (Buss, 1991), and especially
proofs-as-graphs (Statman, 1974).
In this paper, we introduce N-Graphs for intuitionistic logic. De Oliveira
proposed and developed N-Graphs for classical propositional logic. Here
we extend this graphical proof system to intuitionistic logic. We review
the intuitionistic sequent calculus, in particular Gentzen’s work, as well
as two multiple conclusions versions for intuitionistic logic, namely the
system LJ’ (Maehara, 1954) and the system FIL (De Paiva and Pereira,
2005). We discuss problems and possible solutions for the construction
of a proof system akin to N-Graphs but tailored to intuitionistic logic,
thus arriving at our intuitionistic N-Graphs. We show soundness and
completeness of the intuitionistic N-Graphs and discuss future develop-
ments.
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1 Introduction

The N-Graphs system is a multiple-conclusion proof system for classical propo-
sitional logic, developed by de Oliveira (more details can be found in [dO01],
[dOdQ03]). The N-Graphs system has logical rules corresponding to natural de-
duction rules and also to some of the structural rules of the sequent calculus. A
brief explanation of N-Graphs is presented in Section 2.

The multiple-conclusion system N-Graphs was essentially classical, that is,
it did not have a version for intuitionistic propositional logic, as originally con-
ceived. (There are also no intuitionistic versions of tables of development, proofs-
as-graphs or logical flow graphs, as far as we know.) We propose a way of con-
structing a proof system akin to N-Graphs, but tailored to intuitionistic logic.



In Gentzen’s original work [Gen35] the difference between the intuitionistic
system, the calculus LJ and the classical system, the calculus LK, is the cardi-
nality restriction of the succedent of the sequents. The formulation of the system
LK uses sequent expressions of the form Γ ! ∆. One such sequent is intuitively
read as A1∧ ...∧An → B1∨ ...∨Bm, the conjunction of the premisses entails the
disjunction of the conclusions. In the calculus for intuitionistic logic, LJ, sequents
are restricted to succedents with at most one formula occurrence, usually rep-
resented by Γ ! B. However, there are several well-known multiple-conclusion
systems for intuitionistic logic.

First recall the system LJ’ proposed by Maehara [Mae54], which is described
in Takeuti’s book [Tak75]. This system is obtained by setting restrictions on the
calculus LK (instead of LJ) in the two rules of inference negation on the right
(R¬) and implication on the right (R →), as presented below. All other rules of
inference are the same as the rules of the LK system. (Note that since negation
can be defined in terms of falsehood as ¬A = A → ⊥, only the modification on
the implication rule is essential.)

D,Γ !
R¬

Γ ! ¬D
A,Γ ! B

R →
Γ ! A → B

Another multiple conclusion proof system for propositional intuitionistic logic
was developed by de Paiva and Pereira, the system FIL [PP05]. This system uses
a indexing device in the sequent, which allows tracking of the dependency rela-
tions between formulas in the antecedent and in the succedent of the sequent. A
condition in the right implication rule (R →) ensures that only valid construc-
tive formulas are derived. The system FIL has the advantage of being closer to
true multiple-conclusions as used in classical logic, but still retains some form
of constructive constraint, otherwise it would be able to derive all theorems of
classical logic.

In this work we choose the system LJ’ to base our intuitionistic N-Graphs
on. We first present a description of N-Graphs in section 2. Then we show a de-
scription of N-Graphs for intuitionistic logic based on LJ’ in section 3. In section
4 we show how to prove the soundness and completeness for these intuitionistic
N-Graphs. In section 5 we conclude with discussion of future work.

2 N-Graphs

In this section we introduce N-Graphs, the formal system developed by de
Oliveira [dO01]. We begin with basic definitions of N-Graphs then we see how
to build an N-Graph derivation and we describe the soundness criterion. Finally,
we present two examples of derivations in the proof system.

2.1 Definitions

N-Graphs is a proof system with multiple-conclusion for the propositional classic
calculus, and is based on logical rules of natural deduction and some of the



structural rules of sequent calculus. N-Graphs are directed graphs that represent
proofs where each vertex is an occurrence of a formula and each edge represents
an atomic step in a derivation. In this formalism, proofs are represented by
graphs which are constructed from a set of basic links illustrated in Fig. 2. Basic
links represent schematically the rules of the calculus.

The propositional language uses logical constants: ∧ (conjunction), ∨ (dis-
junction), → (implication), ¬ (negation), the constant ⊥ for absurdity (or false)
and the constant & for truth. We use the letters A,B,C,D,E, ... for arbitrary
formulas (or formula-occurences) in the language.

First we need some definitions:

Definition 1 (Focussing/Defocussing branch point). A focussing branch
point is a vertex in a digraph with two edges oriented towards it. A defocussing
branch point is a vertex in a digraph with two edges oriented away from it.

Definition 2 (Focussing/Defocussing/Simple links). A focussing link is
a set {(u1, v), (u2, v)} in a digraph in which v is a focussing branch point as
illustrated in Fig. 1 The vertices u1 and u2 are called premisses of the link, while
the vertex v is the conclusion. A defocussing link is a set {(u, v1), (u, v2)} in
a digraph in which u is a defocussing branch point as illustrated in Fig. 1 The
vertices v1 and v2 are called conclusions of the link, while u is the premise. A
simple link is an edge (u, v) in a digraph which neither belongs to a focussing
nor to a defocussing link. The vertex u is called the premise of the link and v its
conclusion.

Fig. 1. Kinds of links

N-Graphs are somewhat similar to proof-nets. The same way we first define
proof structures and then provide a criterion to determine which proof struc-
tures are logically sound, hence proof-nets, we first define proof-graphs, define a
criterion to determine which proof-graphs are logically sound and then call these
the N-graphs.

Definition 3 (Proof-graph). A proof-graph is a connected oriented graph de-
fined as follow:

1. each vertex is labelled with a formula-occurrence;
2. the edges are of two kinds (“meta” and “solid”), the meta-edges are labelled

by a letter “m” ((u, v)m), all the other edges are called solid edges. The
meta-edges are used to indicate the cancellation of the hypothesis;



3. there are three kinds of links: simple, focussing and defocussing, divided into
logical and structural ones;

4. every vertex in a proof-graph is labelled with a conclusion of a unique link
and is the premise of at most one link.

The set of edges in a proof-graph may be empty. In this case the proof-graph
represents an axiom.

In Fig. 2, we present the logical and structural links of N-Graphs.

Fig. 2. N-Graphs links

We will also need the following definitions:

Definition 4 (Solid indegree/outdegree of v in a proof-graph). The solid
indegree of a vertex v in a proof-graph is the number of solid edges oriented
towards it. The solid outdegree of a vertex v in a proof-graph is the number of
solid edges oriented away from it.

Notice that expansion and contraction links (under Focussing/Defocussing
structural links in Figure 2) are also called switching links. And their edges are
respectively called switching edges. The set of vertices with outdegree equal to
zero is the set of conclusions of a derivation represented in a proof-graph G and
is written as CONC(G). And the set of vertices with indegree equal to zero is the



set of premisses of G, and it is written as PREM(G). The set of hypotheses of
the graph HYPO(G) is the set of vertices in G with solid indegree equal to zero,
but meta indegree equal to 1, denoting the set of cancelled hypothesis.

We can construct proof-graphs mirroring a sequent derivation. Basically for
each inference rule in a sequent proof, we use the corresponding logical and
structural links given in Fig. 2. The meta-edges are used to indicate the cancel-
lation of hypotheses, when necessary. This process can be carried out for any
LK derivation is the contents of the following theorem.

Theorem 1 (Map to N-Graphs). Given a derivation π of A1, ..., An ! B1, ..., Bm

of the LK sequent calculus, it is possible to build a corresponding N-Graph NG(π)
whose elements of PREM(NG(π)) and CONC(NG(π)) are in one-to-one corre-
spondence with the ocurrences of formulae A1, ..., An and B1, ..., Bm respectively.

On the other hand, from N-graphs we can construct sequent derivations. This
result is given by the following theorem.

Theorem 2 (Sequentialization). Given an N-Graph derivation G, there is a
derivation in the LK sequent calculus SC(G) of A1, ..., An ! B1, ..., Bm, whose
ocurrences of formulae A1, ..., An and B1, ..., Bm are in one-to-one correspon-
dence with the elements of sets PREM(G) and CONC(G) respectively.

2.2 Soundness criterion

In order to determine whether an N-Graph corresponds to a proof-graph logically
correct, one must remove an edge from every link of expansion and contraction
(see Fig. 2) in this graph. Thus, new proof-graphs are generated, which must
be acyclic and connected to be a derivation logically valid. Below we recall
the geometric criteria formally established by Oliveira [dO01] to test whether a
proof-graph is logically correct:

Definition 5 (Switching). Given a proof-graph G, a switching graph S as-
sociated with G is a spanning subgraph4 of G in which the following edges are
removed:

– one of the two edges of every expansion and contraction link;
– all meta-edges.

Definition 6 (Switching expansion). Given a proof-graph G, a switching
expansion graph S′ associated with G is a spanning subgraph of G in which all
meta-edges are removed as well as one of the two edges of every expansion link
is removed.

Definition 7 (Meta-condition). Given a proof-graph G, we say that the meta-
condition holds for it iff for every meta-edge (u, v)m of a defocussing link {(u, v)m, (u,w)}
in G, there is a path or a semipath from v to u in every switching expansion graph
S′ associated with G, and that path can not pass through (u,w). Moreover, the
solid indegree of v is equal to zero.



Table 1. Examples of N-Graphs

Definition 8 (N-Graphs derivation). A proof-graph G is an N-Graph deriva-
tion, iff the meta-condition holds for G and every switching graph associated with
G is acyclic and connected.

Looking at the examples shown in Table 1, we realize that in the graph at
left of this figure we have the formula A ∨ B labelling the vertex u, A labelling
the vertex v and A → A ∨ B the vertex w. Thus, applying the meta-condition,
we notice that v has solid indegree equal to zero. However, there is a switching
graph expansion associated with this graph where there is no path or semipath
from v to u without passing via (u,w). This happens because the only potential
path is formed by an expansion link, as we know we shall remove one of the
two edges of every expansion link. As a result, this graph does not satisfy the
meta-condition. Now looking the graph at right of the same table, we check that
in the above meta-edge we have the formula (A∨B)∧ (A∨C) as u, A∨ (B ∧C)
as v and A∨ (B ∧C) → ((A∨B)∧ (A∨C)) as w. Applying the meta-condition,
we determine that v has solid indegree equal to zero and obtain a straight path
from v to u. As a consequence, this graph does satisfy the meta-conditon and it
is indeed an N-Graph derivation.

3 Intuitionistic N-Graphs

We now propose a version of N-Graphs for intuitionistic logic based on the
sequent calculus LJ’ of Maehara and prove soundness and completeness for this
system.

We use the same propositional language of N-Graphs, that is, the logical
connectives ∧ (conjunction), ∨ (disjunction), → (implication), ¬ (negation), and
the constants ⊥ for absurdity (or falsehood) and & for truth.

4 A spanning subgraph is a subgraph G1 of G containing all the vertices of G.



We also use the set of links of the N-Graphs (see Fig. 2) that represent the
atomic steps in a derivation, but clearly we need to modify them somewhat to
ensure compliance with the intuitionistic features of the system.

Intuitionistic logic is a sublogic of classical logic, as in classical logic we can
draw inferences that we cannot in intuitionistic logic. Specifically, intuitionistic
logic rejects the principle of excluded middle (A ∨ ¬A). This principle is clearly
represented in N-Graphs by the logical &-link (see Fig. 2), so we remove it and
introduce a new link ¬-I. More importantly, we establish a restriction in the
links ¬-I and →-I described below.

First recall that just like in N-Graphs, the construction of an intuitionistic
N-Graphs derivation follows the definition of a proof-graph (see Definition 3) and
must be constructed from the set of logical and structural links illustrated in Fig.
3. Note the restriction on the links ¬-I and →-I. When applying those links,
u must be the only conclusion at the time of its addition to the intuitionistic
N-Graph G under construction. This restriction is similar to that of the calculus
LJ’, which restricts the rules R¬ and R →.

Fig. 3. Intuitionistic N-Graphs based on LJ’



Proof-graphs, like proof structures in the case of proof-nets, can be unsound.
To determine the logically correct proof-graphs, the true intuitionistic N-Graphs,
we need a global soundness criterion (see [dO01] and [Alv09]). These problems
come from the multiple-conclusion structure of the graphs, which imply deriva-
tions with cycles that can be not logically correct. Thus we need a global sound-
ness criterion to determine whether the proof-graph is, in fact, an intuitionistic
N-Graph derivation or not.

3.1 Soundness criterion

The global soundness criterion for intuitionistic N-Graphs is obtained by chang-
ing two definitions in Section 2.2. The other definitions will remain the same.

Definition 9 (Intuitionistic meta-condition). Given a proof-graph G, we
say that the intuitionistic meta-condition holds for it iff for every meta-edge
(u, v)m of a defocussing link {(u, v)m, (u,w)} in G:

i) there is a path or a semipath from v to u in every switching expansion graph
S′ associated with G, and that path can not pass through (u,w). Moreover,
the solid indegree of v is equal to zero;

ii) and every path that starts from any vertex in PREM(G) goes to any vertex
in CONC(G).

Definition 10 (Intuitionistic N-Graph derivation). A proof-graph G is an
intuitionistic N-Graph derivation, iff the intuitionistic meta-condition holds for
G and every switching graph associated with G is acyclic and connected.

Two examples of an intuitionistic N-Graph derivation side-by-side with a
corresponding sequent derivation are shown in Table 2 and Table 3. Applying
the meta-condition, we see that these graphs do satisfy the conditon and they
are intuitionistic N-Graphs.

Table 2. Intuitionistic N-Graph of ¬¬¬A → ¬A

Derivation in LJ’

A " A
L¬

A,¬A "
R¬

A " ¬¬A
L¬

A,¬¬¬A "
R¬¬¬¬A " ¬A

R →" ¬¬¬A → ¬A



Table 3. Intuitionistic N-Graphs of A ∨B, (A → Z) ∨B " Z,B ∧ (A → Z), B

Derivation in LJ’

B " B

A " A Z " Z
L →

A,A → Z " Z B " B
L∨

A → Z,A ∨B " B,Z A → Z " A → Z
R∧

A ∨B,A → Z,A → Z " Z,B ∧ (A → Z)
LC

A ∨B,A → Z " Z,B ∧ (A → Z)
L∨

A ∨B, (A → Z) ∨B " Z,B ∧ (A → Z), B

4 Soundness and completeness for Intuitionistic
N-Graphs

In order to ensure that every intuitionistic N-Graph derivation represents a log-
ically correct proof we need to prove soundness and completeness of the sys-
tem. Soundness is proved through Theorem 3, while completeness is established
through Theorem 2.

Theorem 3 (Map to intuitionistic N-Graphs). Given a derivation π of
A1, ..., An ! B1, ..., Bm in the LJ’ calculus, it is possible to build a corresponding
intuitionistic N-Graph NG(π) whose elements of PREM(NG(π)) and CONC(NG(π))
are in one-to-one correspondence with the ocurrences of formulae A1, ..., An and
B1, ..., Bm respectively.

Theorem 4 (Sequentialization). Given an intuitionistic N-Graph derivation
G, there is a derivation in the intuitionistic sequent calculus LJ’ SC(G) of
A1, ..., An ! B1, ..., Bm, whose ocurrences of formulae A1, ..., An and B1, ..., Bm

are in one-to-one correspondence with the elements of sets PREM(G) and CONC(G)
respectively.

To prove these theorems we follow the procedure given by De Oliveira in
[dO01]. The proofs of these theorems are presented in Appendix A.



5 Conclusions

We extended N-Graphs that were proposed for classical propositional logic, to a
system that caters for intuitionistic propositional logic. N-Graphs are a multiple-
conclusion system, so we rely on a basic intuitionistic sequent calculus with
multiple-conclusions. In this paper we used Mahera’s system LJ’ as our basic
multiple conclusion intuitionstic sequent calculus, as it seemed the closest to the
original N-Graphs.

We have proved soundness and completeness for this system, which we call
iN-Graphs, for intuitionistic N-Graphs, by a modification of the original proof
for classical N-Graphs. In future work we intend to describe and prove sound and
complete intuitionistic N-Graphs based on the system FIL of Full Intuitionistic
Logic, introduced by de Paiva and Pereira, [PP05] mentioned in the introduction.
While the system LJ’ is a sound basis for our constructive geometric explorations,
its ability to deal with cut-free proofs is somewhat limited, as its process of cut-
elimination throws derivations out of the system([Sch91]). We hope to obtain
better behavior of the process of cut-elimination (and of its geometric features)
using the system FIL. FIL and LJ’ need to look always the same, not math mode
sometimes and other times not. We have a draft of an intuitionistic system for N-
Graphs with a indexing device that allows us to record the premisses on which
each formula in the graph depends on, and thus to correctly apply the links
¬-I and →-I and determine the soundness of the intuitionistic N-Graphs. We
construct the proof of completeness of the system by mapping the intuitionistic
N-Graphs to FIL, while for the proof of soundness we hope it can be done by
sequentialization over FIL. But this remains future work. Also future work is to
show how one can normalize iN-Graphs and how this normalization relates to
cut-elimination in the sequent calculus.
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A Proof of Theorems 2 and 3

A.1 Proof of Theorem 2

Proof. We prove completeness by induction on the structure of the derivation
π but in the calculus LJ’, whose equivalence with LJ was proved by Maehara
[Mae54]. We follow the procedure given by Oliveira in [dO01], and due to the
similarity of the proofs, of the 13 cases we present only the different cases for
this theorem. Without loss of generality, when the antecedent (succedent) of !
is empty we use the constant & (⊥).

– Case 3: If Π is obtained from Π1 by R¬:

Π1

A2, ..., An,A !
R¬

A2, ..., An ! ¬A

NG(Π) is like in Fig. 5.

Fig. 4. NG(Π) case 3

By induction hypothesis we have obtained NG(Π1). NG(Π) is obtained by
adding the vertices labeled ⊥ and ¬A as well as the meta-edge (⊥, A) and
the edge (⊥,¬A) to NG(Π1).
For NG(Π) be an iN-Graph, the intuitionistic meta-condition should hold.
It is obvious that the solid indegree of A is equal to zero and ⊥ is the only
conclusion in NG(Π1), however the other conditions need to be analyzed
carefully:

1. A and⊥ are linked inNG(Π1) (through a path or semi-path). Otherwise,
NG(Π1) would be disconnected;

2. If A is a branch point of an expansion link, then both conclusions of this
link are also connected to ⊥ (through a path or semi-path). Otherwise,
a switching graph associated with NG(Π1) would be disconnected;

3. Then we conclude that in every switching expansion graph associated
with NG(Π) there is a path or semi-path from A to ⊥.



– Case 8: If Π is as follows:

Π1

A1, ..., An,A ! B
R →

A1, ..., An ! A → B

NG(Π) is like in Fig. 10.

Fig. 5. NG(Π) case 8

For NG(Π) be an iN-Graph, the intuitionistic meta-condition should hold.
It is obvious that the solid indegree of A is equal to zero and that B is
the only conclusion in NG(Π1), however the other conditions need to be
considered carefully:
1. A and B are linked inNG(Π1) (through a path or semi-path). Otherwise,

NG(Π1) would be disconnected;
2. if A is a branch point of one expansion link, then both conclusions of

this link are also linked to B (through a path or semi-path). Otherwise,
a switching expansion graph with NG(Π1) would be disconnected.

3. Then we conclude that in every switching expansion graph associated
with NG(Π) there is a path or semi-path from A to B.

A.2 Proof of Theorem 3

Proof. It is similar to the proof for N-graphs. We need the following additional
definitions.

Definition 11 (Conjunctive/Disjunctive link). The links ∧-I, ¬-E, →-E,
&-focussing weak. and expansion link are called conjunctive. The links ∨-E,
¬-I, →-I, ⊥-defocussing weak. and contraction link are called disjunctive.

Definition 12 (Initial (Final) simple link). A simple link (u, v) in a given
iN-Graph G is initial (final) if u ∈ PREM(G) (v ∈ CONC(G)).

Definition 13 (Initial (Final) defocussing link ). A defocussing link {(u, v1), (u, v2)}
with the exception of →-I and ¬-I, in a given iN-Graph G is initial (final) if
u ∈ PREM(G) ({v1, v2} ⊂ CONC(G)).



Definition 14 (Initial (Final) focussing link). A focussing link {(u1, v), (u2, v)}
is initial (final) in a given iN-Graph G, if {u1, u2} ∈ PREM(G)(v ∈ CONC(G))

Definition 15 (Final →-I (¬-I)). A link →-I (¬-I) {(u, v1)m, (u, v2)} in a
given iN-Graph G is final if v2 ∈ CONC(G).

Definition 16 (Partition property). Let G′ an spanning subgraph of G ob-
tained through elimination of a focussing link {(u1, v), (u2, v)} or through the
elimination of a defocussing link {(u, v1), (u, v2)}. If G′ has three disjoint com-
ponents, we say that the focussing or defocussing link removed has the partition
property.

Definition 17 (Cut point of branching). We say that a vertex v is a cut
point of branching if it is both a branch point of an contraction or expansion
link.

The proof of the Theorem 3 proceeds by induction on the number of vertices
of a given iN-Graph G. We provide an algorithm to transform an iN-Graph G
in a derivation Π of the corresponding calculus LJ ′.

Without loss of generality, we assume ⊥ like A ∧ ¬A, where the formula A
belongs to the premise or conclusion of the link;

The proof is as follows:

1. If G has only one vertex v labeled with A. It is immediate: CS(G) is A ! A;
2. If there exists a simple link (initial or final) (u, v) in G, then we should

remove it as follows :
a) If (u, v) is initial and is one of the links ∧-E1, ∧-E2 or ⊥-simple weak.,

then when we remove fromG, two subgraphs which are clearly iN-Graphs
are obtained:
i) the vertex u;
ii) the iN-Graph G1 with v ∈ PREM(G1). In the case of ∧-E1, G1 is like

the iN-Graph in the dashed box shown in Fig. 6.
With the induction hypothesis is built CS(G1) as follows in the case of
∧-E1:

Π1

A2, ..., An,A ! B1, ..., Bm

Therefore, CS(G) is built by L∧1 applied to CS(G1):

Π1

A2, ..., An,A ! B1, ..., Bm
L∧1A2, ..., An,A ∧B ! B1, ..., Bm

Similarly, we build CS(G) from CS(G1) in the case of ∧-E2 and ⊥-
simple weak. through L∧2 and RW , respectively.

b) If (u, v) is final and is one of the links ∨-I1, ∨-I2 or &-simple weak.,
then when removed from G, two subgraphs which are clearly iN-graphs
are obtained:
i) the vertex v;



ii) The iN-Graph G1 with u ∈ CONC(G1). In the case of ∨-I1, G1 is like
the iN-Graph dashed box shown in Fig. 8.

With the induction hypothesis is built CS(G1) as follows in the case of
∨-I1:

Π1

A1, ..., An ! A, B2, ..., Bm

Therefore, CS(G) is built by applying R∨1 to CS(G1):

Π1

A1, ..., An ! A, B2, ..., Bm
R∨1A1, ..., An ! A ∨B, B2, ..., Bm

The other cases are similar.
c) The cases where (u, v) is final and (i) is one of the links ∧-E1, ∧-E2 or

⊥-simple weak.; or (ii) is initial and is one of the links ∨-I1, ∨-I2 or &-
simple weak., we need to use the cut rule to build CS(G). For example, if
(u, v) is the final link ∧-E2, then by removal ofG, the resulting subgraphs
v and G1 (with u ∈ CONC(G1)) are clearly iN-Graphs. The induction
hypothesis build CS(G1) as follows:

Π1

A1, ..., An ! A ∧B, B2, ..., Bm

CS(G) is built as follows:

Π1

A1, ..., An ! A ∧B, B2, ..., Bm

B ! B L∧2A ∧B ! B
corte

A1, ..., An ! B,B2, ..., Bm

The other cases are similar.
3. If {(u, v1)m, (u, v2)} is final and is one of the links→-I or ¬-I. Then, when we

remove it from G, i.e. the edges (u, v1)m and (u, v2) as well as the vertex v2,
two subgraphs are obtained, otherwise there would be one path or semi-path
from v1 to u, they are:
i) the vertex v2;
ii) the iN-Graph G1 with v1 ∈ PREM(G1) and u ∈ CONC(G1). G1 is clearly

an iN-Graph. It is illustrated in the dashed box of Fig. 10 for the case
→-I and in the Fig. 5 for the case ¬-I.

The induction hypothesis build CS(G1) as follows in the case of →-I:

Π1

A1, ..., An,A ! B

Therefore, CS(G) is deducted from CS(G1) by R →:

Π1

A1, ..., An,A ! B
R →

A1, ..., An ! A → B

The other case is as follows:



Π1

A1, ..., An,A !

Therefore, CS(G) is deducted from CS(G1) by R¬:

Π1

A1, ..., An,A !
R¬

A1, ..., An ! ¬A

4. If there is any initial link {(u1, v), (u2, v)} in G, with the exception of con-
traction, where u1 and u2 belong to PREM(G):
a) If {(u1, v), (u2, v)} is→-E then after removing it from G, three subgraphs

that are clearly iN-Graphs are obtained:
i) the vertices u1 and u2 (two iN-Graphs);
ii) and the iN-Graph G1 with v ∈ PREM(G1).
Let A1 and A2 in G occurrences of the formula A and A → B, respec-
tively. The induction hypothesis build CS(G1) as follows:

Π1

A3, ..., An,B ! B1, ..., Bm

So, for CS(G) we can select the derivation:

A ! A

Π1

A3, ..., An,B ! B1, ..., Bm
L →

A,A3, ..., An,A → B ! B1, ..., Bm

b) If {(u1, v), (u2, v)} is one of the focussing links ∧-I,⊥-link or&-focussing weak.,
CS(G) is built using the cut rule.
b.1) The cases where the link is ∧-I or ⊥-link are similar. For example,

we use the link ∧-I. After removing from G, the resulting subgraphs
u1, u2 and G1 (with v ∈ PREM(G1)) are clearly iN-Graphs. Let A1

and A2 occurrences of formulas A and B respectively, the induction
hypothesis has built CS(G1) as follows:

Π1

A3, ..., An,A ∧B ! B1, ..., Bm

So, for CS(G) we can select the derivation:

A ! A B ! B
R∧

A,B ! A ∧B

Π1

A3, ..., An,A ∧B ! B1, ..., Bm
cut

A,B,A3, ..., An ! B1, ..., Bm

b.2) the cases where the link is &-focussing weak., for CS(G) we can
select the derivation:

A ! A
A ! A

L¬¬A,A !
L∨

A ∨ ¬A,A ! A A, A3, ..., An ! B1, ..., Bm
cut

A ∨ ¬A,A,A3, ..., An ! B1, ..., Bm



5. If there is any final defocussing link {(u, v1), (u, v2)} (with the exception of
the expansion and →-I links) in G, where v1 and v2 belong to CONC(G), we
obtain three iN-Graphs after removing it: the vertex v1; the vertex v2; and
the iN-Graph G1 with u ∈ CONC(G1). Here we need to use the cut rule. For
example, the case where the final link is ∨-E, CS(G1) is as follows:

Π1

A1, ..., An ! A ∨B, B3, ..., Bm

So for CS(G) we can select the derivation:

Π1

A1, ..., An ! A ∨B, B3, ..., Bm

A ! A B ! B
L∨

A ∨B ! A,B
cut

A1, ..., An ! A,B,B3, ..., Bm

6. If there is any final contraction link {(u1, v), (v, u2)} inG where v ∈ CONC(G),
then after removing it from G, only two subgraphs are obtained. Otherwise,
G would not be an iN-graph because an switching subgraph associated with
it would be disconnected. The subgraphs are:

i) the vertex v;
ii) the iN-Graph G1 with u1 and u2 in CONC(G1)

CS(G1) is as follows:

Π1

A1, ..., An ! A,A, B2, ..., Bm

So, CS(G) is deducted from CS(G1) by RC:

Π1

A1, ..., An ! A,A, B2, ..., Bm
RC

A1, ..., An ! A, B2, ..., Bm

7. If there is any initial expansion link {(u, v1), (u, v2)} inG where u ∈ PREM(G).
Then after removing it from G, for the same reasons the previous case, two
subgraphs are obtained:

i) the vertex u;
ii) and the iN-Graph G1 with v1 and v2 in PREM(G1)

CS(G1) is as follows:

Π1

A2, ..., An,A,A ! B1, ..., Bm

So, CS(G) is deducted from CS(G1) by LC:

Π1

A2, ..., An,A,A ! B1, ..., Bm
LC

A,A2, ..., An ! B1, ..., Bm



8. If each initial link is focussing and disjunctive, and each final link is defo-
cussing and conjunctive. This case further complicated by the presence of a
large number of links and situations where we need to divide our iN-Graph
into two disjoint iN-Graphs, is treated by De Oliveira [dO01], formulating
and proving the partition theorem that shown below.

Theorem 5 (Partition, De Oliveira). Let G an iN-graph where each
initial link is focussing and disjunctive and each final link is focussing and
conjunctive. So there must be or some
(i) initial defocussing and conjunctive link or final focussing and conjunctive
link with the partition property or (ii) one cut point of branching.

Corollary 1. If G is an iN-Graph as in Theorem 4 then:
(a) If {(u, v1), (u, v2)} is an initial defocussing and disjunctive link with the

partition property, then after removing it from G, we obtain three sub-
graphs G1, G2 and G3, which are also iN-Graph as follows:
If {(u, v1), (u, v2)} is an initial focussing and disjunctive link with the
property of partition, then remove it from the G we obtain three subgraphs
G1, G2 and G3 , which are also iN-Graph as follows:
– G1 is the vertex u;
– G2 has v1 between its premisses;
– G3 has v2 between its premisses;
– PREM(G) = u ∪ PREM(G2) ∪ PREM(G3);
– CONC(G) = CONC(G2) ∪ CONC(G3).

(b) If {(u1, v), (u2, v)} is an final focussing and conjunctive link with the
partition property, then remove it from G we obtain three subgraphs G1,
G2 and G3, which are also iN-Graph as follows:
– G1 is the vertex v;
– G2 has u1 between its conclusions;
– G3 has u2 between its conclusions;
– PREM(G) = PREM(G2) ∪ PREM(G3);
– CONC(G) = u ∪ CONC(G2) ∪ CONC(G3).

(c) If s is a cut point of branching of an expansion link {(s, s1), (s, s2)}, then
remove it from G we obtain two subgraphs which are also iN-Graph as
follows:
– G1 has s between its conclusions;
– G2 has s1 and s2 between its conclusions;
– PREM(G) = PREM(G1) ∪ PREM(G2);
– CONC(G) = CONC(G1) ∪ CONC(G2).

Proof. If G is an iN-Graph, it is immediate to verify that the subgraphs as
constructed in the different cases, also follow the global soundness criterion.

Continuing the proof, since the Theorem 2 we have that in the Case 8 there
is a defocussing/focussing link with the partition property or or there is a cut
point of branching in G. The Corollary 1 said if a focussing/defocussing link has
the partition property, then G can be divided into three disjoint proof-graphs,
which are also iN-Graph. Then:



1. In the case {(u, v1), (u, v2)} is the defocussing link with the partition prop-
erty. G1 is the vertex u, and G2 and G3 have v1 and v2 between its premisses,
respectively. The induction hypothesis has built CS(G2) and CS(G3). Let
the link ∨-E and {A ∨ B}, ∆1, ∆2 three partitions of A1, ..., An as well as
Γ1, Γ2 two partitions of B1, ..., Bm, then CS(G2) and CS(G3) are as follows:

Π2

∆1,A ! Γ1

Π3

∆2,B ! Γ2

So, CS(G) is built from CS(G2) and CS(G3) by L∨:

Π2

∆1,A ! Γ1

Π3

∆2,B ! Γ2
L∨

∆1,∆2,A ∨B ! Γ1,Γ2

2. In the case {(u1, v), (u2, v)} is the focussing link with the partition property.
G1 is the vertex v, and G2 and G3 has u1 and u2 between its conclusions,
respectively. The induction hypothesis build CS(G2) and CS(G3). Let the
link ∧-I and {A∧B}, Γ1, Γ2 three partitions of B1, ..., Bn as well as ∆1, ∆2

two partitions of A1, ..., Am, then CS(G2) and CS(G3) are as follows:

Π2

∆1 ! A,Γ1

Π3

∆2 ! B,Γ2

So, CS(G) is built from CS(G2) and CS(G3) by R∧:

Π2

∆1 ! A,Γ1

Π3

∆2 ! B,Γ2
R∧

∆1,∆2 ! A ∧B,Γ1,Γ2

3. In the case s is a cut point of branching of the expansion link {(s, s1), (s, s2)}.
Let s labeled with A and ∆1, ∆2 and Γ1, Γ2 partitions of A1, ..., An and
B1, ..., Bm, respectively. The induction hypothesis build CS(G1) and SC(G2)
respectively as follows:

Π1

∆1 ! A,Γ1

Π2

∆2,A,A ! Γ2



So, CS(G) is built from CS(G2) and CS(G3) by cuts and contrations as
follows:

Π1

∆1 ! A,Γ1

Π1

∆1 ! A,Γ1

Π2

∆2,A,A !,Γ2
cut

∆1,∆2,A ! Γ1,Γ2
cut

∆1,∆1,∆2 ! Γ1,Γ1,Γ2
contractions

∆1,∆2 ! Γ1,Γ2


